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CHAPTER YV

THE MOTION OF A SOLID BODY OF ANY FORM WHATEVER

169. IF a solid body receives an impulse in a direction passing through its centre of gravity, all
its parts will move with an equal velocity; but if the direction of the impulse passes on one side
of that centre, the different parts of the body will have unequal velocities, and from this
inequality results a motion of rotation in the body round its centre of gravity, at the same time
that the centre is moved forward, or trandated with the same velocity it would have taken, had
the impulse passed through it. Thus the double motions of rotation and trandlation are produced
by one impulse.

170. If abody rotates about its centre of gravity, or about an axis, and is at the same time
carried forward in space; and if an equal and contrary impulse be given to the centre of gravity,
S0 as to stop its progressive motion, the rotation will go on as before it received the impulse.

171. If a body revolves about a fixed axis, each of its particles will describe a circle,
whose plane is perpendicular to that axis, and its radius is the distance of the particle from the
axis. It is evident, that every point of the solid will describe an arc of the same number of degrees
in the same time; hence, if the velocity of each particle be divided by its radius or distance from
the axis, the quotient will be the same for every particle of the body. This is called the angular
velocity of the solid.

172. The axis of rotation may change at every instant, the angular velocity is therefore the
same for every particle of the solid for any one instant, but it may vary from one instant to
another.

173. The genera equations of the motion of a solid body are the same with those of a
system of bodies, provided we assume the bodies m, m¢ m& &c. to be a system of particles,
infinite in number, and united into a solid mass by their mutual attraction.

Let X, Y, z be the co-ordinates of dm, a particle of a solid body urged by the forces X, Y,
Z, paralle to the axes of the co-ordinates; then if S the sign of ordinary integrals® be put for &,
and dm for m, the general equations of the motion of a system of bodies in article 158 become

2
Sx‘;—fdm:s»(dm,

d?y
SX?dm =SxYdm, (28)

2
S%dm:Sdem,
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[and]?
2
S%e(%odm SY(XY - yX)dm
e %]

azd?®x- xd%z6
Sg—gr— dm=S¥2X - x2) dm (29)

20 o2y
S>€wdzd+dyg m=SxyZ- zY)dm

which are the general equations of the motion of a solid, of which m is the mass.
Determination of the general Equations of the Motion of the Centre of

Gravity of a Solid in Space

174. Let X+ x¢ y+y¢ Z+ z¢ be put for X, y, z, in equations (28) then
g =SxyYdm (30)

inwhich X, Yy, Z, arethe co-ordinates of o the moveable centre of gravity of the solid referred
to P afixed point, and x¢ y¢ z¢ are the co-ordinates of dm referred to o, fig. 47. Now the co-
ordinates of the centre of gravity being the same for al the particles of the solid,

25 2%
S>dmd Z( :md—z(
dt dt
2= 2
S>dmd y mOI 3’
dt’ dt
d’z _ _d’z
=m—.
dt’ dt

And, with regard to the centre of gravity,
Sxx@im=0
Sxydm=0
Sxzfim =0
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which denote the sum of the particles of the body into their respective distances from the origin;
therefore their differentials are

2
Sxdm ddt’2‘¢: 0

d’y¢
2

2
Sxdm ?jtiq:: 0.

Sxdm =0

This reduces the equations (30) to

2—
Oclitz( =SxXdm

2— 31
d Z:Sdem 1)

2=
m C(;t,f =SxZdm

m

m

These three equations determine the motion of the centre of gravity of the body in space,
and are similar to those which give the motion of the centre of gravity of a system of bodies.

The solid therefore moves in space as if its mass were united in its centre of gravity, and
all the forces that urge the body applied to that point.

175. If the same substitution be made in the first of equations (29), and if it be observed
that X, VY, Z, arethe samefor al the particles

S(xd?y - yd*x)dm=m(xd?y- yd*x)
S(XY - YX) dm=X>8xYdm- ¥>SxXdm;
aso
S(x@zy- y&I> X + Xd 2y ¢ dex@ dm=
d?y xSxx@im- d*X>-Sxyfm+ X xSxd*yéim- ¥ 58 xd*xém =0,

because x¢ y¢ z¢ are referred to the centre or gravity as the origin of the co-ordinates;
consequently the co-ordinates X, Yy, Z, and their differentials vanish from the equation, which
therefore retains its original form. Similar results will be obtained for the areas on the other two

co-ordinate planes, and thus, equations (29) retain the same forms, whether the centre of gravity

be in motion or at rest, proving the motions of rotation and translation to be independent of one
another.
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Rotation of a Solid

176. If to abridge
S(yz- zY)dm=M,
S(zX - xz)dm=M¢
S(xY - yX)dm=M¢&

The integrals of equations (29), with regard to the time, will be

aydz- zdy o .
Se———-dm= dt,
S a5 oM
aZdx - xdz gy .
Se—“dm= dt
S & oM (32)

axdy - ydx ¢ .
Se—2 2" "dm= M @it

These equations, which express the properties of areas, determine the rotation of the
solid;- equations (31) give the motion of its centre of gravity in space. S expresses the sum of the

particles of the body, and 0 relates to the time alone.

177. Impetus is the mass into the square of the velocity, but the velocity of rotation
depends on the distance from the axis, the angle being the same; hence the impetus of a
revolving body is the sum of the products of each particle, multiplied by the square of its
distance from the axis of rotation. Suppose 0A, oB, oC, fig. 10, to be the co-ordinates of a
particle dm, situate in m, and let them be represented by X, y, z; then because mA=Ro,

mB=Qo, mC=Po, the squares of the distances of dm from the three axes ox, oy, oz, are
respectively

(mA) =y?+22, (mB) =x2+2, (mC)’ =x*+y?.

Henceif A¢ B¢ CG be the impetus or moments of inertia of a solid with regard to the axes ox,
oy, oz, then -

At= Sydm(y* +7°)

Be= Sxdm(x2 + 22) (33)
Co= Ssdm(x? +y?).

178. If an impulse be given to a sphere of uniform dengity, in a direction which does not
pass through its centre of gravity, it will revolve about an axis perpendicular to the plane passing
through the centre of the sphere and the direction of the force; and it will continue to rotate about
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the same axis even if new forces act on the sphere, provided they act equally on al its particles,
and the areas which each of its particles describes will be constant.

179. If the solid be not a sphere, it may change its axis of rotation at every instant; it is
therefore of importance, to ascertain if any axes exist in the solid, about which it would rotate
permanently.

180. If a body rotates permanently about an axis, the rotatory pressures arising from the
centrifugal forces of the solid are equal and contrary in each point of the axis, so that their sumis
zero, and the areas described by every particle in the solid are proportional to the time; but if
foreign forces disturb the rotation, the rotatory pressures on the axis of rotation are unequal,
which causes a perpetual change of axis, and a variation in the areas described by the particles of
the body, so that they are no longer proportiona to the time. Thus the inconstancy of areas
becomes atest of disturbing forces. In this disturbed rotation the body may be considered to have
a permanent rotation during an instant only.

181. When three axes of a solid body are permanent axes of rotation, the rotatory
pressures on them are zero; thisis expressed by the equations

Sxxydm=0; Sxxzdm=0; Sxyzdm=0;

which characterize such axes. To show this, it is necessary to prove that when these equations
hold, the rotation of the body round any one axis causes no twisting effort to displace that axis,
for example, that the centrifugal forces developed by rotation round z produce no rotatory
pressure round y and x; and so for the other, and vice versa.

Demonstration. Let r :1/x2 +y? be the distance of a particle dm from z the axis of

rotation, and let w be the angular velocity of the particle. By article 171 w :X, therefore
r
2

w? xr =— is the aentrifugal force arising from rotation round z, and acting in the direction .
r

When resolved in the direction x, and multiplied by dm it gives

X
w2rdmx= =w?xdm,
r

which, regarded as a force tending to turn the system roundy, gives rotatory pressure = w?xzdm,
because it acts at the distance z from the axisy. Therefore when Sxxzdm= 0, the whole effect is
zero. Similarly, when Sxyzdm=0, the whole effect of the revolving system to turn round x
vanishes. Therefore, in order that z should be [the] permanent axis of rotation,

Sxxzdm=0, Sxyzdm=0.

In like manner, in order that y should be so,
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Sxxydm=0, Sxzydm=0
must exist; and in order that x should be so,
Sxyxdm =0, Sxxxdm=0
must exist, all of which are in fact only three different equations, namely
Sxxydm=0, Sxxzdm=0, Sxyzdm=0; (39

and if these hold at once, x, y, z will all be permanent axes of rotation.
Thus the impetus is as the square of the distance from the axis of rotation, and the
rotatory pressures are simply as the distance from the same axis.

182. In order to ascertain whether a solid possesses any permanent axes of rotation, let
the origin be a fixed point, and let x¢ y¢ z¢ be the co-ordinates of a particle dm, fixed in the

solid, but revolving with it about its centre of gravity. The whole theory of rotation is derived
from the equations (32) containing the principle of areas. These are the areas projected on the
fixed co-ordinate planes xoy, xoz, yoz, fig. 48; but if ox¢ oy¢ oz¢ be the new axes that revolve

with the solid, and if the values of X, y, z given in article 163, be substituted, they will be the
same sums, when projected on the rew co-ordinate planes xoy¢ x0z¢ yoz¢ Theanglesq, vy,

and f , introduced by this change are arbitrary, so that the position of the new axes ox¢ oy¢ oz¢

in the solid, remains indeterminate; and these three angles may be made to fulfil any conditions
of the problem.

183. The equations of rotation will take the most smple form if we suppose x¢ y¢ z¢ to
be the principal axes of rotation, which they will become if the valuesof q, y, and f, can be so
assumed as to make the rotatory pressures Sxxg¢dm, Sxx¢dm, Sxyedm, zero at once, then the
equations (32) of the areas, when transformed to functions of x¢ y¢ z¢ and deprived of these

terms, will determine the rotation of the body about its principal, or permanent axes of rotation,
xG yG z¢

184. If the body has no principal axes of rotation, it will be impossible to obtain such
vaues of g, f, and y, as will make the rotatory pressures zero; it must therefore be

demonstrated whether or not it be possible to determine the angles in question, so as to fulfil the
requisite condition.

185. To determine the existence and position of the principal axes of the body, or the
anglesq, f, andy , sothat

Sxx¢dm=0; Sxx¢tm=0; Sxyedm =0.
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Let valuesof x¢ y¢ z¢ infunctions of X, y, z, determined from the equations in article 163 be
substituted in the preceding expressions, then if to abridge,

Sxédm=1% Sy%m=n? Sxz’dm=s’

Sxxydm=f; Sxzdm=g; Sxyzdm=h,
there will result
cosf »Sxx@lim- sinf xSxy¢m =

(IZ- nz)sinq siny cosy + f sing (coszy - sin’y )
+cosq (gcosy - hsiny );

sinf »8xx@dm +cosf Sxyedm = (35)

sing cosq{lzsinzy +n°cos’y - s°+2fsiny cosy}
+(coszq : sinzq)>(gsiny +hcosy ).
If the second members of these be made equal to zero, there will be

hsny - gcosy
(Iz- nz)siny cosy + f (coszy - sin’y )

tanqg =

gsiny +hcosy
§?- 12sin?y - n?cos’y - 2f siny cosy '

Stan2q =

tang
1- tan'q

1 _
stang =

by the arithmetic of sines; hence, equating these two values of %tanzq , and substituting for
tang itsvauein y ; then if to abridge, u =tany , after some reduction it will be found that

0=(gu+h)(hu- g)2+
{(IZ- nz)u+f(1-u2)}>{(hsz- hi2 + fg)u+gn2- gs’ - hf};

where u is of the third degree. This equation having at least one real root, it is always possible to
render the first members of the two equations (35) zero at the same time, and consequently

(Sxx@@im)” +(Sxy2dm)” =0.

But that can only be the case when Sxx@dm=0, Sxye¢dm =0. The vaue of u=tany , gives
y , consequently tang and g become known.
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It yet remains to determine the conditionSxx¢dm =0, and the angle f . If substitution be
madein Sxx¢dm =0, for x¢ and y¢ from article 163, it will taketheform HsinX + Lcos2f,
H and L being functions of the known quantities q and y ; asit must be zero, it gives

L
tang] =- —;
S

and thus the three axes ox¢ oy¢ oz( determined by the preceding valuesof q, y , andf , satisfy
the equations

Sxx@dm=0, Sxyye¢ddm=0, Sxx§dm =0.

186. The equation of the third degree in u seems to give three systems of principal axes,
one for each value of u; but u is the tangent of the angle formed by the axis x with the line of
intersection of the plane xy with that of xd/¢; and as any one of the three axes, x¢ y¢ z¢ may be
changed into any other of them, since the preceding equations will still be satisfied, therefore the
equation in u will determine the tangent of the angle formed by the axis x with the line of
intersection of xy and xd¢, with that of xy and x&¢, or with that of xy and y&¢. Consequently the

three roots of the equation in u are real, and belong to the same system of axes.

187. Whence every body has at least one system of principal and rectangular axes, round
any one of which if the body rotates, the opposite centrifugal forces balance each other. This
theorem was first proposed by Segner® in the year 1755, and was demonstrated by Albert Euler*
in 1760.

P 188. The position of the principle axes ox¢ oy¢ oz¢ in

the interior of the solid, is now completely fixed; and if there
be no disturbing forces, the body will rotate permanently about
fig. 45 Ay one of them, as 0z¢ fig. 48; but if the rotation be disturbed

by foreign forces, the solid will only rotate for in instant about
ozG and in the next element of time it will rotate about oz@

a x and so on, perpetually changing. Six equations are therefore
5 required to fix the position of the instantaneous axis oz¢ three
5 }’ will determine its place with regard to the principal axes ox¢

oy¢ oz¢ and three more are necessary to determine the

position of the principal axes themselves in space, that is, with regard to the fixed co-ordinates
0x, oy, oz. The permanency of rotation is not the same for all the three axes, as will now be
shown.

189. The principal axes possess this property- that the moment of inertia of the solid is a
maximum for one of these, and a minimum for another. Let x¢ y¢ z¢ be the co-ordinates of

dm, relative to the three principal axes, and let X, y, z, be the co-ordinates of the same element
referred to any axes whatever having the same origin. Now if
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Ce=S(x*+ y?)dm

be the moment of inertia relatively to one of these new axes, as z, then substituting for x and y
their values from article 163, and making

A:S(y(E+z(E)>dm; B=S(x<ff +z<f3) dm; C=S(x<f +y<ff)>dm;

thevalue of C¢ will become

C¢= Asin’qsin’f +Bsin®qcos’f +Ccos’q,
in which
sin’qsin’f , sin®qcos’f, cos’q,

are the squares of the cosines of the angles made by ox¢ oy¢ oz¢ with oz, and A, B, C, are the
moments of inertia of the solid with regard to the axes x¢ y¢ and z¢ respectively. The quantity
C¢ is less than the greatest of the three quantities A, B, C, and exceeds the least of them; the
greatest and the least moments of inertia belong therefore, to the principal axes. In fact, C¢ must

be less than the greatest of the three quantities A, B, C, because their joint coefficients are aways
equal to unity; and for a smilar reason it is always greater than the least.

190. When A = B = C, then all the axes of the solid are principal axes, and it will rotate
permanently about any one of them. The phere of uniform density is a solid of this kind, but
there are many others.

191. When two of the moments of inertia are equal, as A=B, then

C¢= Asin’q + Ccos’q ;
and al the moments of inertia in the same plane with these are equal: hence al the axes situate in
that plane are principal axes. The ellipsoid of revolution of uniform density is of thiskind; al the

axesin the plane of its equator being principal axes.

192. An ellipsoid of revolution is formed by the

fig. 43. 5 rotation of an elipse ABCD about its minor axis BD.
Then AC is its equator. When the moments of inertia
are unequal, the rotation round the axes which have
their moment of inertia @ maximum or minimum is
C Q A stable, that is, round the least or greatest axis; but the

rotation is unstable round the third, and may be
destroyed by the slightest cause. If stable rotation be
dightly deranged, the body will never deviate far from
its equilibrium; whereas in unstable rotation, if it be
o disturbed, it will deviate more and more, and will
never return to its former state.
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193. This theorem is chiefly of importance with regard to the rotation of the earth. If xoy
(fig. 46) be the plane of the ecliptic, and zits pole; x®y¢ the plane of the equator, and z¢ its pole:
then o0z( isthe axis of the earth’srotation, zoz¢=q isthe obliquity of the ecliptic, gN the line of
the equinoxes, and g the first point of Aries: hence xog =y isthe longitude of ox, and xdg =f
is the longitude of the principa revolving axis ox¢ or the measure of the earth’ s rotation: 0zd is
therefore one of the permanent axes of rotation.

The earth is flattened at the poles, therefore 0z( is the least of the permanent axes of
rotation, and the moment of inertia with regard to it, is a maximum. Were there no disturbing
forces, the earth would rotate permanently about it; but the sun and moon, acting unequally on
the different particles, disturb its rotation. These disturbing forces do not sensibly alter the
velocity of rotation, in which neither theory nor observation have
detected any appreciable variation; nor do they sensibly displace the 2l
poles of rotation on the surface of the earth; that is to say, the axis of
rotation, and the plane of the equator which is perpendicular to it,
always meet the surface in the same points; but these forces alter the
direction of the polar axis in space, and produce the phenomena of
precession and nutation;® for the earth rotates about oz¢ fig. 50, fig. 30.
while oz® revolves about its mean place oz¢ and at the same time o
0z' describes a cone about 0z, so that the motion of the axis of
rotation is very complicated. That axis of rotation, of which all the
points remain at rest during the time dt, is caled an instantaneous ¥
axis of rotation, for the solid revolves about it during that short
interval, as it would do about a fixed axis.

The equations (32) must now be so transformed as to give al the circumstances of rotatory
motion.

194. The equationsin article 163, for changing the co-ordinates, will become

X = ax¢+ by¢+ cz¢
y = ak¢+ by ¢+ c@zd¢ (36)
Z = axG+ b@yt+ cz¢
If to abridge

a=cosqsiny sinf +cosy cosf
b =cosq siny cosf - cosy sinf
c=singsiny
at=cosq cosy snf - siny cosf
b¢=cosq cosy cosf +siny sinf
c¢=sing cosy
a@¢=- sing sinf
b@= - sinq cosf
c¢=cosq,
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where a, b, c are the cosines of the angles made by x with x¢ y¢ z¢ a¢ b¢ c¢ are the cosines
of the angles made by y with x¢ y¢ z¢ and a¢ b& c@ are the cosines of the angles made by z

with the same axes.
Whatever the co-ordinates of dm may be, since they have the same origin,

X+y +7 =8 +y +24 .
By means of these, it may be found that

a’+af +af =1 ab + a®bt+ atb¢=0
b?+ b® +b€ =1 ac+att+ at®=0
c+cf+ctf=1 bc+ b&¢+h&¢=0.

In the same manner, to obtain x¢ y¢ z¢ infunctions of X, v, z,

x¢=ax +afy +at
y¢=Dbx +bdy +bt (37
z¢=cx +c§ +clz,

whence the equations of condition,

a’+b’+c?=1 aat+ bbt+ cct= 0
a+b€+cC=1 aa®+ bb®+ cc®=0
a€ +pb€ +c€ =1 at¢+bo¢+ cet=0

six of the quantities a, b, ¢, a¢ b¢ c¢ a¢ b¢ c¢ are determined by the preceding equations,
and three remain arbitrary.

If values of x¢ y¢ z¢ found from equations (36) be compared with their values in
equations (37), there will result

a=bk® b@®¢ at=blk- bct at=bct b
b=atkt at® be=act a® b=at- act (38)
c=abdb®- ath¢ C=ath- ab® c®=abt¢ ab.

195. The axes x¢ y¢ z¢ retain the same position in the interior of the body during its

rotation, and are therefore independent of the time; but the angles a, b, ¢, a¢ b¢ c¢ a€¢ b¢ cg
vary with the time; hence, if values of y, z, % % from equations (36), be substituted in the

first of equations (32), it will become
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|aea@adr— adbla¢o abdl bdr— bdblb¢o aa:@cdr— cdblc¢o
I (E - y(E (EI
& @ o e S & 5
aea@ b¢- b®lat+ b@a@— addb¢o T
'8 dt 55 :

ydm= oM xt.
aea@c‘lr— c®tlat+ célad- a‘lblcq‘o Y i
8 dt 5

aeb@l ct c®ibt+ céb®- b&icto
—y¢¢

8 dt o b

S'

1'
|
|
I -
.I. -I.
.I- -I.
I -I.
t

If a¢ a€¢ b¢ &c. be eliminated from this equation by their values in (38), and if to
abridge

cdb +ctb¢+ ctlb¢= - bdc- béc¢ b&tic€= pdt

adc + adlct¢+ attic¢=- cda- ctla¢- cttla¢t=qdt (39

bda +béat+ b®tia®= - adb - a¢ib¢ attlb®=rdt

=S(yé +z¢)dm B=S(x¢ +z¢)dm C=S(x¢+y¢)dm
And if
Sxx¢dm=0 Sxx&dm=0 Sxyedm =0,
it will be found that
aAp+bBq+cCr = OMdt ;

by the same process it may be found that

afp+b®Bq+cCr = omdt ,
a@®\p +bWBg +ctCr = oM @it .

196. If the differentials of these three equations be taken, making all the quantities vary
except A, B, and C, then the sum of the first differential multiplied by a, plus the second
multiplied by a¢ plusthe third multiplied by a® will be

(;I? (C- B)xqr =aM +ai ¢+atv ¢,

in consequence of the preceding relations between a ata®t b btbd c otc¢ and ther
differentials. By a similar process the coefficient b btb#; &c., may be made to vanish, and then
if

aM +aM ¢+ at €= N

bM +b®M ¢+ b® €= N¢
cM +c C+ct €= Na
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the equations in question are transformed to

dp
— +(C-B)xgr =N
dt ( )ar

3—?+(A- C)xp=N¢ (40)

dr
C—+(B- A = Nd@.
at +(B- A)xpg

Andif a, a¢ a¢ b, b¢ &c., and their differentias, be replaced by their functionsin f, y, and
Y, givenin article 194, the equations (39) become

pdt = sinf sing »xdy - cosf xdg
qdt = cosf sing xdy +sinf xdq (41)
rdt =df - cosq xdy .

197. These six equations contain the whole theory of the rotation of the planets and their
satellites, and as they have been determined in the hypothesis of the rotatory pressures being
zero, they will give their rotation nearly about their principal axes.

198. The quantitiesp, g, r, determine oz& the position of the real and instantaneous axis of
rotation, with regard to its principal axis 0z¢ when a body has no motion but that of rotation, al

the points in a permanent axis of rotation remain at rest; but in an instantaneous axis of rotation
the axis can only be regarded as at rest from one instant to another.

If the equations (36) for changing the co-ordinates, be resumed, then with regard to the
axis of rotation,

dx=0, dy=0, dz= 0,

since al its points are at rest; therefore the indefinitely small spaces moved over by that axis in
the direction of these co-ordinates being zero, the equations in question become,

x¢la + y¢ib + Zc = O,
x@a¢+ y@éib¢+ z@lc¢ = O,
xfa® + yéb® + z@c®= 0O,

which will determine x¢ y¢ z¢ and consequently 0z@ the axisin question.
For if the first of these equations be multiplied by c, the second by c¢ and the third by
ct; their sumis

py¢ gz¢=0. (42
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Again, if the first be multiplied by b, the second by b, and thethird by b", their sum is®
rx¢- pz¢=0. (43)

Lastly, if the first equation be multiplied by a, the second by a¢ and the third by a@
their sum is

gz¢- ry¢=0.

The last of these is contained in the two first, which are the equations to a straight line
oz® which forms, with the principle axes x¢ y¢ z¢ angles whose cosines are

p . q : r :
\/p2+q2+r2' \/p2+q2+r2’ Jp2+q2+r2' (44)

for the two last give

2

2 2
xE = zcef_- Y€ = z@?—z;

whence
I p°+f+r’0
x€ + y& + z(fzztfl'r—z';
|
and therefore
z¢ _ r
\/xd?+y¢2+z¢2 \/p2+q2 +r2
But
oztlltzﬂ/xrl?+ytﬁ2 +2¢ ;
and

0z®: oc :: 1: cosz®c;

thenif x¢ y¢ z¢ bethe co-ordinates of the point z&

cos zbc = z¢ - r r
JxE+yE+26  [pPrq?+r? ' fig. 51,

In the same manner ¢ Lo

coszlxt= P

VPG
and y
L
cos zlby¢ = q

VPP +aEr? 1%

Consequently oz is the instantaneous axis of rotation.
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201.” The angular velocity of rotation is also given by these quantities. If the object be to
determine it for a point in the axis, as for example where oc =1, then

x¢=0, y¢=0,

and the values of dx, dy, dz give, when divided by dt,

dy . dq dq .
—Sng, —Cosq, - —sing,
dr o T oS T SN

for the components of the velocity of a particle; hence the resulting velocity is

\/dq2+cdl5t/ 2sin’q :\/qZTrz,

which is the sum of the squares of the two last of equations (41).

199. But in order to obtain the angular velocity of the body, this quantity must be divided
by the distance of the particle at c¢ from the axis oz but this distance is evidently equal to the

sine of ztc, the angle between 0zl and oz the principal and instantaneous axes of rotation;
but

is the cosine of this angle; hence

r2
L rg e
NI +p°
/p2+q2+r2’

is the angular velocity of rotation. Thus, whatever may be the rotation of a body about a point
that is fixed, or one considered to be fixed, the motion can only be rotation about an axis that is
fixed during an instant, but may vary from one instant to another.

or

is the sine; and therefore

200. The position of the instantaneous axis with regard to the three principal axes, and the
angular velocity of rotation, depend on p, g, r, whose determination is very important in these
researches; and as they express quantities independent of the situation of the fixed plane xoy,
they are themselves independent of it.
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201.2 Equations (40) determine the rotation of a solid troubled by the action of foreign
forces, as for example, that of the earth when disturbed by the sun and moon. But the same
equations will also determine the rotation of a solid, when not disturbed in its rotation.

Rotation of a Solid not subject to the action of Disturbing Forces,
and at liberty to revolve freely about a Fixed Point, being its
Centre of Gravity, or not

202. Vauesof p, q, r, in terms of the time must be obtained, in order to ascertain al the
circumstances of rotation at every instant.

If we suppose that there are no disturbing forces, the areas are constant: hence the
equations (40) become

Axdp+(C - B)>gx >t =0;
B>dg+(A- C)x »p>at =0; (45)
Codr +(B- A) xpxqxdt =0.

If the first be multiplied by p, the second by g, and the third by r, their sum is

Apdp + Bqdg+ Crdr =0,
and itsintegral is
Ap? + Bg? +Cr? =k?, (46)

k? being a constant quantity. Again, if the three equations be multiplied respectively by Ap, Bq,
Cr, and integrated, they give
A2 pz + quz +C?%r2 = hz’ (47)

a constant quantity. Equation (46)° contains the principle of the preservation of impetus or living
force which is constant in conformity with article 148. From these two integrals are obtained:

o = h®- Bk+(B- C)xCr?

A(A- B) (49)
, _h?- Ak+(A- C)xCr?
47 B(B- A
By the substitution of these values of p and g, the last of equations (45) when resolved
according to dt, gives
_ Cdr x/AB
dt= (49)

(- B+ (B- C)Cr)of- b+ Ak (C- A))scr)
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This equation will give by quadratures the value of t inr, and reciprocally the value of r in t; and
thus by the substitution of thisvalue of r in equations (48) the three quantitiesp, g and r become
known in functions of the time. This equation can only be integrated when any two of the
moments of inertia are equal, either when

A=B, B=C, A=C;
in each of these cases the solid is a spheroid of revolution.

203. Thus p, q, r, being known functions of the time, the angular velocity of the solid,
and its rotation with regard to the principal axes, are known at every instant.

204. This however is not sufficient. To become acquainted with al the circumstances of
rotation, it is requisite to know the position of the principle axes themselves with regard to
quiescent space, that is, their position relatively to the fixed axes x, y, z But for that purpose the
angles f , y, and g, must be determined in functions of the time, or, which is the same thing, in

functionsof p, q, r, which may now be regarded as known quantities.
If the first of equations (45) be multiplied by a, the second by b, and the third by c, their
sum when integrated, in consequence of the relations between the anglesin article 194, is

aAp + bBg + cCr =1,

by asimilar process
af\p + bBg + cCr = I¢ (50)
at\p+ b@Bq + ctCr = 1§

I, 1¢ 1€ being arbitrary constant quantities. These equations coincide with those in article 195,
and contain the principle of areas. They are not however three distinct integrals, for the sum of
their squares is
Azpz + quz +C2r2 = |2+ |02+ I@Z,
in consequence of the equations in article 194. But this is the same with (47); hence
12+ |¢ +|€ =h?
being an equation of condition, equations (50) will only give values of two of the angles f , vy,

and q.
The constant quantities I, I¢ 1& correspond with ¢, c¢ c§ in article 164, therefore

SWIP+HIE+I€

is the sum of the areas described in the time t by the projection of each particle of the body on
the plane on which that sum is a maximum. If xoy be that plane, | and 14 are zero: therefore, in
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every solid body in rotation about an axis, there exists a plane, on which the sum of the areas
described by the projections of the particles of the solid during a finite time is a maximum. It is
called the Invariable Plane, because it remains parallel to itself during the motion of the body: it
is aso named the plane of the Greatest Rotatory Pressure.

Since

| =0, 1¢=0, I¢=h,

if the first of equations (50) be multiplied by a, the second by a¢ and the third by a@ in
consequence of the equations in article 194, their sum is

a@:&;
h
in the same manner it will be found that
b@¢= %, C@=g;
h h

or, subgtituting the valuesof a® b& cd from article 194,

Ap Bq

1
sinqd’sinfd::-T, sing ¢cosf ¢:-T’ cosqq::ﬂ (51)

o
The accented angles q¢ f ¢ y ¢ relate to the invariable plane, and angles q, f, y, to the fixed

plane.
Because p, q, r, are known functions of thetime, f ¢ and q¢ are determined, and if dg be

eliminated between the two first of equation (41), the result will be
sinq&dy ¢=sing&ainf Gpdt +sing Gcosf Gyt .
But in consequence of equations (51), and because

Ap®+Bg® =k- Cr?,
Cr- k
dy 6= oz 7 >hdt;
and asr is given in functions of the time by equation (49), y ¢ is determined.
Thus, p,q,r,y ¢ q¢ and f ¢ are given in terms of the time: so that the position of the

three principal axes with regard to the fixed axes, ox, oy, 0z, and the angular velocity of the body,
are known at every instant.

205. As there are six integrations, there must be six arbitrary constant quantities for the
complete solution of the problem. Besides h and k, two more will be introduced by the
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integration of dt and dy ¢. Hence two are still required, because by the assumption of xoy for the

invariable plane, | and 1¢ become zero.
Now thethreeangles,y ¢ f ¢ q¢ aregivenintermsof p, g, r, and these last are known

in terms of thetime; Fencey ¢ f ¢ g¢ (fig. 49), are known with regard to the invariable plane
xoy: and by trigonometry it will be easy to determine valuesof y, f, q, with regard to any
fixed plane whatever, which will introduce two new arbitrary quantities, making in all six, which
are requisite for the complete solution of the problem.

206. These two new arbitrary quantities are the inclination of the invariable plane on the
fixed plane in question, and the angular distance of the line of intersection of these two planes
from aline arbitrarily assumed on the fixed plane; and as the initial position of the fixed planeis
supposed to be given, the two arbitrary quantities are known.

If the position of the three principal axes with regard to the invariable plane be known at
the origin of the motion, f ¢ q¢ will be given, and therefore p, g, r, will be known at that time;

and then equation (46) will give the value of k.
The constant quantity arising from the integration of dt depends on the arbitrary origin or
instant whence the time is estimated, and that introduced by the integration of dy ¢ depends on

theorigin of theangley ¢ which may be assumed at pleasure on the invariable plane.

207. The determination of the sixth constant quantity h is very interesting, as it affords
the means of ascertaining the point in which the sun and planets may be supposed to have
received a primitive impulse, capable of communicating to them at once their rectilinear and
rotatory motions.

The sum of the areas described round the centre of gravity of the solid by the radius of
each particle projected on a fixed plane, and respectively multiplied by the particles, is
proportional to the moment of the primitive force projected on the same plane; but this moment
is a maximum relatively to the plane which passes through the point of primitive impulse and
centre of gravity, hence it is the invariable plane.

fig. 32. 208. Let G, fig. 52, be the centre of gravity of a body of which ABC
B is a section, and suppose that it has received an impulse in the plane ABC at

the distance GF, from its centre of gravity; it will move forward in space at

C A the same time that it will rotate about an axis perpendicular to the plane

ABC. Let v be the velocity generated in the centre of gravity by the
primitive impulse; then if m be the mass of the body, m»/>GF will be the
moment of this impulse, and multiplying it by %t, the product will be equal to the sum of the

areas described during the time t; but this sum was shown to be

LI+ 16 + 1€ ;
JZ+1C+1€ =mw>GF=h:

hence
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which determines the sixth arbitrary constant quantity h. Were the angular velocity of rotation,
the mass of the body and the velocity of its centre of gravity known, the distance GF, the point of
primitive impulse, might be determined.

209. It is not probable that the primitive impulse of the planets and other bodies of the
system passed exactly through their centres of gravity; most of them are observed to have a
rotatory motion, though in others it has not been ascertained, on account of their immense
distances, and the smallness of their volumes. As the sun rotates about an axis, he must have
received a primitive impulse not passing through his centre of gravity, and therefore it would
cause him to move forward in space accompanied by the planetary system, unless an impulse in
the contrary direction had destroyed that motion, which is by no means likely. Thus the sun's
rotation leads us to presume that the solar system may be in motion.

210. Suppose a planet of uniform density, whose radius is R, to be a sphere revolving
round the sun in S, at the distance SG or 7, with an angular velocity represented by u, then the
velocity of the centre of gravity will be v=ur .

Imagine the planet to be put in motion by a primitive impulse,
passing through the point F, fig. 53, then the sphere will rotate about
fig. 33. an axis perpendicular to the invariable plane, with an angular velocity
equal to r, for the components q and p at right angles to that plane
will be zero; hence, the equation™®

s m:mxvaF
becomes
| €= mur xGF ;
and
[¢=rC.

The centre of gyration is that point of a body in rotation, into which, if al the particles were
condensed, it would retain the same degree of rotatory power. It is found that the square of the
radius of gyration in a sphere, is equal to % of the square of its semi-diameter; hence the rotatory

inertia C becomes gmfe2 . thus

2
|¢=r’ EmRZ, and GF:EXRT
5 5T

c =

211. Hence, if the ratio of the mean radius of a planet to its mean distance from the sun,
and the ratio of its angular velocity of rotation to its angular velocity in its orbit, could be
ascertained, the point in which the primitive impulse was given, producing its motion in space,
might be determined.

212. Were the earth a sphere of uniform density, the ratio R would be 0.000042665; and
r
the ratio of its rotatory velocity to that in its orbit is known by observation to be 366.25638,
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whence GF= % ; and as the mean radius of the earth is about 4,000 miles, the primitive impulse

must have been given at the distance of 25 miles from the centre. However, as the density of the
earth is not uniform, but decreases from the centre to the surface, the distance of the primitive
impulse from its centre of gravity must have been something less.

213. The rotation of the earth has established a relation between time and the arcs of a

circle. Every point in the surface of the earth passes through 360° in 24 hours; and as the rotation
is uniform, the arcs described are proportiona to the time, so that one of these quantities may
represent the other. Thus, if a be an arc of any number of degrees, and t the time employed to

describeit, 360°: a :: 24 :t: hence a :%t; or, if the constant co-efficient % be represented

by n, a =nt, and sina =sinnt, cosa =cosnt .
In the same manner the periodic time of the moon being 27.3 days nearly, an arc of the

moon’s orbit would be %t, and may aso be expressed by nt. Thus, n may have al values, so

that nt is a general expression for any arc that increases uniformly with the time.

214. The motions of the planets are determined by equations of these forms,

2
d—g+ n“u=R
dt

2
d—;‘+ n“u=0,
dt

which are only transformations of the general equation of the motions of a system of bodies. The
integrals of both give a value of u in terms of the sines and cosines of circular arcs increasing
with the time; the first by approximation, but the integral d the second will be obtained by
making u = c*, ¢ being the number whose Napierian*! logarithm is unity. Whence
du=c* (d2x+dx2) ,

and the equation in question becomes

d?x+dx* + n°dt> =0.

Let
dx = ydt, then d*x = dydt ,

since the element of the time is constant, which changes the equation to

dy+dt(n2+y2) =0.

Mary Somerville 161



Book | : Chapter V : The Motion of a Solid Body of Any Form Whatever

If y=m aconstant quantity, dm=dy =0, hence

n’+m’ =0;
whence
m=+ny- 1,
but
dx = ydt = J_rndtﬂ,
the integral of whichis
x=+nt+/- 1

Asx hastwo vaues, u=c" gives
u=bc™*, and u=b& "™,
and because either of these satisfies the conditions of the problem, their sum
u=bc™ ! +u=he 1,

also satisfies the conditions and is the general solution, b and bd being arbitrary constant
quantities. But

c™1 = cosnt ++/- 1sinnt,
¢ ™1 =cosnt - /- 1sinnt.

Hence
u=(b+b¢cosnt+(b- bd~/-1sinnt.
Let
b+b¢=M sine; (b- b+-1=M cose;
and then'?
u=M {sinecosnt + cose sinnt}
or

u=Msin(nt+e),
which is the integral required, because M and e are two arbitrary constant quantities.
215. Since a sine or cosine never can exceed the radius, si n.( nt +e) never can exceed
unity, however much the time may increase; therefore u is a periodic quantity whose value

oscillates between fixed limits which it never can surpass. But that would not be the case were n
an imaginary quantity; for let

n:aib\/-_l;
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then the two values of x become

x=bt+aty-1 x=bt-aty-1,

Cbt+atJ-_1 — Cbt )Catﬁ :Cbt {Cosat +4/-1Si nat}
Cbt—atJ-_l =cbt xc'at‘/'_l = d’t{COS&t - /- 1si nat}

consequently,

whence
u= cb‘{(b+ b®) cosat +(b- b(I)«/zsi nat}
or substituting for
b+b¢ (b- bdy-1;
[then] 13
u=c"xMssin(at+e).
Butl4

c =1+ bt+ib2t2+ib3t3+&c;,
2 2.3

therefore c°' increases indefinitely with the time, and u is no longer a periodic function, but
would increase to infinity.

Were the roots of n? equal, then x=bt, and u= Cxc", C being constant.

Thusiit appears that if the roots of n? beimaginary or equal, the function u would
increase without limit.

These circumstances are of the highest importance, because the stability of the solar
system depends upon them.

Rotation of a Solid which turns nearly round one of its principal
Axes, asthe Earth and the Planets, but not subject to the action
of accelerating Forces

216. Since the axis of rotation 0z is very near oz¢ fig. 50, the angle z6z® is so small,
that its cosine SN differs but little from unity; hence p and g are so minute that their

product may be omitted, which reduces equations (45) to

Cdr =0,
Adp+(C- B)grdt =0,
Bdg+(A- C) prdt =0,

the first shows the angular velocity to be uniform, and the two last give
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2 _ -
d_g+(A C)r%: : %:(B C)qr:O’
dt B dt dt A
hence if the constant quantity
(A-C)(B-C) o _ v
AB
the result will be
d’a,
—+n°g=0;
a

and by article 214,
q=Mdos(nt+g).
In the same manner
p=Msin(nt+g);
whence
MeC=M x M .
B(B- C)
217. If oz@ thereal axis of rotation coincides with oz¢ the principal axisin the beginning
of the motion, then g and p are zero; hence dso, M =0, and M¢=0. It follows therefore, that in
this case g and p will aways be zero, and the axis oz® will always coincide withozd; whence, if

the body begins to turn round one of its principal axes, it will continue to rotate uniformly about
that axis for ever. On account of this remarkable property these are called the natural axes of

rotation; it belongs to them exclusively, for if the position of the rea axis of rotation oz® be
invariable on the surface of the body, the angular velocity will be constant; herce

dp=0, dg =0, dr =0,
ad
(C- B)ardt=0, (A-C)rpdt=0, (B- A)pgdt=0.

218. If A, B, C, be unequal, these equations will only be zero in every case when two of
the quantities p, g, r, are zero; but then, the real axis coincides with one of the principal axes.

If two of the moments of inertia be equal, as A= B, the three equations are reduced to
rp=0, gr =0; both of which will be satisfied, that is, they will both be zero for every value of g

and p, if r =0. The axis of rotation is, therefore, in a plane at right angles to the third principa
axis; but as the body is then a solid of revolution, every axisin that plane is a principal axis.

219. When A=B=C, the three preceding equations are zero, whatever may be the
valuesof p, q, r, then al the axes of the body will be principal axes. Thus the principal axes
alone have the property of permanent rotation, though they do not possess that property in the
same degree.

164 M echanism of the Heavens



Book | : Chapter V : The Motion of a Solid Body of any Form Whatever

220. Suppose the real axis of rotation oz® fig. 50, to deviate by an indefinitely small
guantity from oz¢ the third principal axis, the coefficients M and M ¢ will then be indefinitely
small, since q=M¢ cos(nt+g), and p=M " sin(nt+g) are indefinitely small. Now if nbea
real quantity, sin(nt+g), cos(nt+g), will never exceed very narrow limits, therefore g and p
will remain indefinitely small; so that the real axis oz® will make indefinitely small oscillations
about the third principal axis. But if n be imaginary, by article 215, sin(nt+g), cos(nt+g),

will be changed into quantities which increase with the time, and the real axis of rotation will
deviate more and more from the third principa axis, so that the motion will have no stability.
The value of n will decide that important point.

Since™
- r\/(A- C)(B-C)
AB

it will be areal quantity when C the moment of inertia with regard to oz¢ is either the greatest or

the least of the three moments of inertia A, B, C, for then the product™® (A- C)(B- C) will be

positive; but if C have a value that is between those of A and B, that product will be negative, and
n imaginary. Hence the rotation will be stable about the greatest and least of the principal axes,
but unstable about the third.

221. Having determined the rotation of the solid, it only remains to ascertain the position
of the principal axis with regard to quiescent space, that is, with regard to the fixed axes ox, oy,
oz. That evidently dependsontheanglesf ,y, and q.

If the third principal axis oz¢ fig. 50, be assumed to be nearly at right angles to the plane
xoy, the angle zoz¢ or g, will be so very small that its square may be omitted, and its cosine
assumed equal to unity; then the equations (41) give df - dy =rdt; orif r =a, be a constant
quantity, the integrd is,

y =f -at+e.

If sinqcosf =s, singsinf =u, thetwo first of equations (41), after the elimination of
dy , give

§+au:-p %-as:q
dt "ot '

The integrals of these two quantities are obtained by the method in article 214, and are

s=xcos(at+I )- %tcos(an),

u=xsin(at+l)- '(A‘:a—'i/lsin(nﬁ 9),
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x and | being new arbitrary quantities introduced by integration. The problem is completely
solved, since sand u give q and f in values of thetime, and y isgiveninvaluesof f and the
time.

Compound Pendulums

222. Hitherto the rotation of a solid about its centre of gravity has been considered either

when the body is free, or when the centre of gravity is fixed; but imagine a olid OP, fig. 54, to

revolve about a fixed axis in o which does not pass through

its centre of gravity. If the body be drawn aside from the

¥ vertical oz, and then left to itself, it will oscillate about that

axis by the action of gravitation alone. This solid body of

any form whatever is the compound pendulum, and its

motion is perfectly similar to that of the simple pendulum
already described, depending on the property of aress.

The motion being in the plane zoy, the sums of the

areas in the other two planes are zero; so that the motion of

the pendulum is derived from the equation

fig. 54.

yr

JF 2 2 P
ayd“z- zd°yo6,
Sz :dm= S(yz- zY)dm.
e [4]
In order to adapt that equation to the motion of the
pendulum, let oy=y, oP=2z Ao=2z{ Ay=y¢ hence
PA=- y¢ fig.55; and let the angle PoA be represented by .
P is the centre of gravity of the pendulum, which is supposed
to rotate about the axis ox, passing through o at right angles to the plane zoy, and therefore it
cannot be represented in the diagram.
Now

F

z

- y¢=zsinqg
z¢= zcosq
z¢= ycoxq
y¢= ycosq

If the first of these four equations be multiplied by sing, and the second by cosq, their
um is

z = z@osq - ydsng ;
in the same way
y = z@sinq + ydcosq .
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If these values be substituted in the equation of areas it becomes

Adzcj =-S(yZ- zY)dm

dt
for
= S(y(f + z(f) dm
If the pendulum moves by the force of gravitation alone in the direction oz,
Y=0 Z=g.
Hence
dqg
A =- Sgydm.
a2 Sgy

If the value of y be substituted in this it becomes,*’

—Zq =-gsing xSxzém- gcosq »xSxyéim.

Because z¢ passes through the centre of gravity of the pendulum, the rotatory pressure
S.ydim is zero; hence

dg _

d——- gsing >Sxz@im.

If L be the distance of the centre of gravity of the pendulum from the axis of rotation ox, the
rotatory pressure Sxzélm becomes Lm, in which m is the whole mass of the pendulum; hence

qu =-Lmgsing,

or
Ct] 2
dt’

2L£19 xcosq +C,

C being an arbitrary constant quantity.

223. If a ssimple pendulum be considered, of which all the atoms are united in a point at
the distance of | from the axis of rotation ox, its rotatory inertia will be  A=ml?, m being the

mass of the body, and 12 =z?+ y?. Inthiscase | = L. Substituting this value for A, we find

2
(3(:2 =?cosq +C.
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224. Thus it appears, that if the angular velocities of the compound and simple
pendulums be equal when their centres of gravity are in the vertical, their oscillations will be
exactly the same, provided also that the length of the simple pendulum be equal to the rotatory
inertia of the solid body with regard to the axis of motion, divided by the product of the mass by

the distance of its centre of gravity from the axis, or | = A :

Thus such a relation is established between the lengths of the two pendulums, that the
length of a simple pendulum may be found, whose oscillations are performed in the same time
with those of a compound pendulum.

In this manner the length of the simple pendulum beating seconds has been determined
from observations on the oscillations of the compound pendulum.

Notes

! We use boldface for S in this edition. Somerville usesthe plain face S.

2 2.
2 The left hand side of this expression isreads ?%Edm in the 1% edition.

2
3 Segner, Johann or Jan Andreas, (1704-1777), mathematician and physicist, born in Pressburg, Hungary. Segner
discovered that solid bodies have three axes of symmetry. His publications include Elements of Arithmetic and
Geometry and Nature of Liquid Surfaces.
“ See note 6, Book |, Chapter 11.
® nutation. Oscillatory movement of the axis of a rotating body (as the earth). MerriamWebster’s Collegiate
Dictionary.
® The prime in the second term in (43) is interchanged in error as rx¢- p& =0 in the 1% edition.

" This article (201) is out of sequence. It ought to be article 199. The ordering sequence resumes at 199 in the next
article. As a consequence there are two articles numbered 201. We retain the ordering followed in 1% edition.

8 There are two articles numbered 201 as noted above.

% “Equation (46)” reads* This equation” in the 1% edition (published erratum).

10 The 1% edition has a period after this expression.

1 The principle of logarithms was devised by John Napier (1550-1617) of Merchiston, Scotland, to abridge
arithmetical calculations, by the use of addition and subtraction in place of multiplication and division.

12 \Written with arounded right-hand bracket in 1% edition.

13 punctuation in equation changed to period from semicolon in 1% edition.

14 Comma added.

(A- B)(B-C)
AB
numerator under the root should be (A- C) not (A- B).

16 Asin the 1% edition (see preceding note.)
Y Thefirst right hand term in this expressionreads - gsing Sxz&m in 1% edition.

15 Thisreads n=r in the 1% edition. But from the analysis in article 216, the first factor in the
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